Charbonneau, D., Brown, T. M., Noyes, R. W. & Gilliland, R. L. Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002).
Deming, D., Brown, T. M., Charbonneau, D., Harrington, J. & Richardson, L. J. A new search for carbon monoxide absorption in the transmission spectrum of the extrasolar planet HD 209458b. Astrophys. J. 622, 1149–1159 (2005).
Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617–663 (2019).
Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).
Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).
Madhusudhan, N. C/O ratio as a dimension for characterising exoplanetary atmospheres. Astrophys. J. 758, 36 (2012).
Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013).
Hawker, G. A., Madhusudhan, N., Cabot, S. H. C. & Gandhi, S. Evidence for multiple molecular species in the hot Jupiter HD 209458b. Astrophys. J. Lett. 863, L11 (2018).
MacDonald, R. J. & Madhusudhan, N. HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water. Mon. Not. R. Astron. Soc. 469, 1979–1996 (2017).
Pinhas, A., Madhusudhan, N., Gandhi, S. & MacDonald, R. J. H2O abundances and cloud properties in ten hot giant exoplanets. Mon. Not. R. Astron. Soc. 482, 1485–1498 (2019).
Booth, R. A., Clarke, C. J., Madhusudhan, N. & Ilee, J. D. Chemical enrichment of giant planets and discs due to pebble drift. Mon. Not. R. Astron. Soc. 469, 3994–4011 (2017).
Madhusudhan, N., Amin, M. A. & Kennedy, G. M. Toward chemical constraints on hot Jupiter migration. Astrophys. J. Lett. 794, L12 (2014).
Öberg, K. I. & Bergin, E. A. Excess C/O and C/H in outer protoplanetary disk gas. Astrophys. J. Lett. 831, L19 (2016).
Claudi, R. et al. GIARPS@TNG: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy. Eur. Phys. J. Plus 132, 364 (2017).
Oliva, E. et al. The GIANO spectrometer: towards its first light at the TNG. Soc. Phot. Instrum. Eng. 8446, 84463T (2012).
Gandhi, S. et al. Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters. Mon. Not. R. Astron. Soc. 495, 224–237 (2020).
Rainer, M. et al. Introducing GOFIO: a DRS for the GIANO-B near-infrared spectrograph. Proc. SPIE 10702, 1070266 (2018).
Welch, B. L. The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34, 28–35 (1947).
Welbanks, L. & Madhusudhan, N. On degeneracies in retrievals of exoplanetary transmission spectra. Astron. J. 157, 206 (2019).
Barstow, J. K. Unveiling cloudy exoplanets: the influence of cloud model choices on retrieval solutions. Mon. Not. R. Astron. Soc. 497, 4183–4195 (2020).
Moses, J. I. et al. Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011).
Moses, J. I. Chemical kinetics on extrasolar planets. Phil. Trans. R. Soc. A 372, 20130073 (2014).
Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J. 157, 114 (2019).
Gandhi, S., Brogi, M. & Webb, R. K. Seeing above the clouds with high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 498, 194–204 (2020).
Hood, C. E. et al. Prospects for characterizing the haziest sub-Neptune exoplanets with high-resolution spectroscopy. Astrophys. J. 160, 198 (2020).
Venot, O. et al. Global chemistry and thermal structure models for the hot Jupiter WASP-43b and predictions for JWST. Astrophys. J. 890, 176 (2020).
Mordasini, C., van Boekel, R., Mollière, P., Henning, T. & Benneke, B. The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. Astrophys. J. 832, 41 (2016).
Burrows, A. & Sharp, C. M. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999).
Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).
Tinetti, G. et al. A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135–209 (2018).
Covino, E. et al. The GAPS programme with HARPS-N at TNG. I. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting system Qatar-1. Astron. Astrophys. 554, A28 (2013).
Brogi, M. et al. Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189 733 b. Astron. Astrophys. 615, A16 (2018).
Guilluy, G. et al. Exoplanet atmospheres with GIANO. II. Detection of molecular absorption in the dayside spectrum of HD 102195b. Astron. Astrophys. 625, A107 (2019).
Harutyunyan, A. et al. GIANO-B online data reduction software at the TNG. Proc. SPIE 10706, 1070642 (2018).
Noll, S. et al. An atmospheric radiation model for Cerro Paranal. Astron. Astrophys. 543, A92 (2012).
de Kok, R. J. et al. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b. Astron. Astrophys. 554, A82 (2013).
Damiano, M. et al. A principal component analysis-based method to analyze high-resolution spectroscopic data on exoplanets. Astrophys. J. 878, 153 (2019).
Piskorz, D. et al. Evidence for the direct detection of the thermal spectrum of the non-transiting hot gas giant HD 88133 b. Astrophys. J. 832, 131 (2016).
Piskorz, D. et al. Detection of water vapor in the thermal spectrum of the non-transiting hot Jupiter Upsilon Andromedae b. Astron. J. 154, 78 (2017).
Foreman-Mackey, D. et al. A systematic search for transiting planets in the K2 data. Astrophys. J. 806, 215 (2015).
Gandhi, S. & Madhusudhan, N. GENESIS: new self-consistent models of exoplanetary spectra. Mon. Not. R. Astron. Soc. 472, 2334–2355 (2017).
Pinhas, A., Rackham, B. V., Madhusudhan, N. & Apai, D. Retrieval of planetary and stellar properties in transmission spectroscopy with AURA. Mon. Not. R. Astron. Soc. 480, 5314–5331 (2018).
Polyansky, O. L. et al. ExoMol molecular line lists—XXX. A complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).
Coles, P. A. et al. ExoMol molecular line lists—XXXV. A rotation–vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490, 4638–4647 (2019).
Barber, R. J. et al. ExoMol line lists—III. An improved hot rotation–vibration line list for HCN and HNC. Mon. Not. R. Astron. Soc. 437, 1828–1835 (2014).
Chubb, K. L. et al. ExoMol molecular line lists—XXXVII. Spectra of acetylene. Mon. Not. R. Astron. Soc. 493, 1531–1545 (2020).
Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).
Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).
Li, G. et al. Rovibrational line lists for nine isotopologues of the CO molecule in the X1Σ+ ground electronic state. Astrophys. J. Suppl. Ser. 216, 15 (2015).
Huang, X. et al. Ames-2016 line lists for 13 isotopologues of CO2: updates, consistency, and remaining issues. J. Quant. Spectros. Radiat. Transfer 203, 224−241 (2017).
Richard, C. et al. New section of the HITRAN database: collision-induced absorption (CIA). J. Quant. Spectrosc. Radiat. Transf. 113, 1276–1285 (2012).
Barstow, J. K., Aigrain, S., Irwin, P. G. J. & Sing, D. K. A consistent retrieval analysis of 10 hot Jupiters observed in transmission. Astrophys. J. 834, 50 (2017).
Cubillos, P. E. et al. Near-ultraviolet transmission spectroscopy of HD 209458b: evidence of ionized iron beyond the planetary Roche lobe. Astron. J. 159, 111 (2020).
Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nat. Astron. 4, 951–956 (2020).
Webb, R. K. et al. A weak spectral signature of water vapour in the atmosphere of HD 179949 b at high spectral resolution in the L band. Mon. Not. R. Astron. Soc. 494, 108–119 (2020).
Kilpatrick, B. et al. Community targets of JWST’s Early Release Science Program: evaluation of WASP-63b. Astron. J. 156, 103 (2018).
Malik, M. et al. HELIOS: an open-source, GPU-accelerated radiative transfer code for self-consistent exoplanetary atmospheres. Astron. J. 153, 56 (2017).
Blecic, J., Harrington, J. & Bowman, M. O. TEA: a code calculating thermochemical equilibrium abundances. Astrophys. J. Suppl. Ser. 225, 4 (2016).
Yurchenko, S. N. & Tennyson, J. ExoMol line lists—IV. The rotation–vibration spectrum of methane up to 1500 K. Mon. Not. R. Astron. Soc. 440, 1649–1661 (2014).
Burrows, A., Marley, M. S. & Sharp, C. M. The near-infrared and optical spectra of methane dwarfs and brown dwarfs. Astrophys. J. 531, 438–446 (2000).
Kurucz, R. L. Atlas: a Computer Program for Calculating Model Stellar Atmospheres. SAO Special Report 309 (Smithsonian Astrophysical Observatory, 1970).
Borysow, J., Frommhold, L. & Birnbaum, G. Collision-induced rototranslational absorption spectra of H2–He pairs at temperatures from 40 to 3000 K. Astrophys. J. 326, 509–515 (1988).
Borysow, A., Frommhold, L. & Moraldi, M. Collision-induced infrared spectra of H2–He pairs involving 01 vibrational transitions and temperatures from 18 to 7000 K. Astrophys. J. 336, 495–503 (1989).
Borysow, A. & Frommhold, L. Collision-induced infrared spectra of H2–He pairs at temperatures from 18 to 7000 K. II. Overtone and hot bands. Astrophys. J. 341, 549–555 (1989).
Borysow, A., Jorgensen, U. G. & Fu, Y. High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres. J. Quant. Spectrosc. Radiat. Transf. 68, 235–255 (2001).
Borysow, A. Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K. Astron. Astrophys. 390, 779–782 (2002).
Cubillos, P. E. An algorithm to compress line-transition data for radiative-transfer calculations. Astrophys. J. 850, 32 (2017).
Bonomo, A. S. et al. The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets. Astron. Astrophys. 602, A107 (2017).
Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938).
Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).
Dawson, R. I. & Johnson, J. A. Origins of hot Jupiters. Annu. Rev. Astron. Astrophys. 56, 175–221 (2018).
Madhusudhan, N., Bitsch, B., Johansen, A. & Eriksson, L. Atmospheric signatures of giant exoplanet formation by pebble accretion. Mon. Not. R. Astron. Soc. 469, 4102–4115 (2017).
Torres, G., Winn, J. N. & Holman, M. J. Improved parameters for extrasolar transiting planets. Astrophys. J. 677, 1324–1342 (2008).
Knutson, H. A., Charbonneau, D., Noyes, R. W., Brown, T. M. & Gilliland, R. L. Using stellar limb-darkening to refine the properties of HD 209458b. Astrophys. J. 655, 564–575 (2007).
Albrecht, S. et al. Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. Astrophys. J. 757, 18 (2012).
Evans, T. M. et al. A uniform analysis of HD 209458b Spitzer/IRAC light curves with Gaussian process models. Mon. Not. R. Astron. Soc. 451, 680–694 (2015).
Naef, D. et al. The ELODIE survey for northern extra-solar planets. III. Three planetary candidates detected with ELODIE. Astron. Astrophys. 414, 351–359 (2004).
Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017).
Lyulin, O. M. & Perevalov, V. I. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank. J. Quant. Spectrosc. Radiat. Transf. 201, 94–103 (2017).
https://www.nature.com/articles/s41586-021-03381-x
2021-04-07 15:16:30Z
CBMiMmh0dHBzOi8vd3d3Lm5hdHVyZS5jb20vYXJ0aWNsZXMvczQxNTg2LTAyMS0wMzM4MS140gEA
Bagikan Berita Ini
0 Response to "Five carbon- and nitrogen-bearing species in a hot giant planet's atmosphere - Nature.com"
Post a Comment